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SUMMARY & CONCLUSION 
 

Tracking 3D-targets with a 2D-radar is a significant and 
challenging problem.  Motivated by the Range-Parameterized 
EKF (RPEKF) algorithm used in the problem of bearing-only 
tracking, we present a practical solution to solve this problem 
in this article, i.e., Height-Parameterized EKF (HPEKF).  
This method could reduce the fuzzy phenomenon in height 
information of the target.  So we can track 3D-targets with a 
single 2D-radar in an effective way under some conditions. 

 

1. INTRODUCTION 

 

It is well known that we can only get target bearing and 
target range from a 2D-radar.  To eliminate the fuzzy 
phenomenon when using 2D-radar to track 3D- targets, the 
geometric method is generally adopted.  However, it is 
indicated theoretically and experimentally that this method has 
poor performance especially when the range is far or the 
altitude is low [1-4].  Then, Tracking 3D-targets using such 
insufficient information is a significant and challenging 
problem.   

Although there exist some similarities, the problem of 
tracking a 3D-target with a 2D-radar has apparent difference 
from the problem of bearing-only tracking.  In both of the 
tracking problems, the information gained by the observation 
platform is incomplete.  However, because we can get target 

range from a 2D-radar, the target in the former situation is 
observable if the height of the target is invariable.  But the 
performance of tracking is highly dependent on the accuracy 
of initial height, and in general, the height is not known 
beforehand.  To solve this problem, we present a practical 
algorithm in this article, i.e., Height-Parameterized EKF 
(HPEKF).  This method is activated by the 
Range-Parameterized EKF (RPEKF) [5, 6] used in the 
bearing-only tracking problem.  Our main ideas is that, to 
reduce the fuzzy phenomenon in the height information, we 
divide the height interval of interest into a number of 
subintervals, and each subinterval is dealt with an independent 
EKF.  The weights associated with each EKF are computed to 
determine how the state estimate of each filter is combined.  
And the updated state estimate and covariance matrix of the 
height-parameterized tracker can be computed as a weighted 
sum of the individual estimates and covariance matrices. 

 

2. PROBLEM STATEMENT 

 

 Let us consider a 3D-target, located at coordinates 
( ) ( ) ( )( )tztytx ,，  moves with a nearly constant velocity vector 
( ) ( ) ( )( )tztytx ,,  and nearly constant height.  Then the target 

is defined to have the state vector 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]′= tztytxtztytxt ,,,,,x , 

where the prime denotes transpose, and the discrete time state 
equation for this problem can be written as 
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T  is the sampling time, kw  is an i.i.d process noise vector 

with ( )0,~ QNk 0w .  Where 3
2

0 IQ aσ= , aσ  is a scalar, 

3I  is the 33×  identity matrix.   

 The available measurement at time k  encompasses the 
target bearing ( )kθ  and target range ( )kr .  It can be 

modeled as 

( ) kkkkk H vzvxz +=+= ,              (2) 

where kv is an independent Gaussian measurement noise 

vector with ( )0,~ RNk 0v , Here ( )22
0 , θσσ rdiagR = , whereas 

kz  is the noise-free bearing and range vector 
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 Given a sequence of measurements ,2,1, =kkz , 

defined by (2) and (3), and target motion model described in 
(1), the tracking problem is to obtain estimate of the state 
vector kx . 

 

3. HEIGHT-PARAMETERIZED EKF 

 

The HPEKF tracks the state of a 3D-target with a number 
of independent EKF trackers, each with a different initial 
height estimate .  To do so, the height interval of interest is 
divided into a number of subintervals, and each subinterval is 
dealt with an independent EKF.  Suppose the height interval 
of interest is ( )maxmin , zz , and we wish to track using FN  

EKF filters. For a particular EKF, we note that the tracking 
performance is highly dependent on the Coefficient of 
Variation the height estimate [5], zC , given by zzσ , where 
z and zσ are the height estimate and its standard deviation 

respectively.  In order to maintain a comparable performance 
for all FN  filters, it is desirable to subdivide the interval 
( )maxmin , zz  such that zC  is the same for each subinterval.  
Note that zC for each subinterval may be computed 

approximately as iz z
i

σ , where iz  is the mean of subinterval 

i and
izσ is the height standard deviation for that subinterval.  

Assuming the height errors to be uniformly distributed in each 
subinterval, the desirable subdivision can be obtained if the 
subinterval boundaries are chosen as a geometrical progression.  
If ρ  is the common ratio, we have the relation 

FNzz ρminmax = , 

which gives ρ  as 

FN

z
z

1

min

max








=ρ . 

For the above division of range, it is easily established [5] that 
the coefficient of variation is given by 

( )
( )112

12
+

−==
ρ

ρσ

i

z
z z

C i .             (4) 

 To determine how the state estimate of each filter is 
combined, we need to compute the weights associated with 
each EKF.  At time step 1, let the probability that the true 

track originated from the i-th subinterval be denoted by iw1 .  

These probabilities of the distribution of target height, which 
form the initial weights for the HP tracker, is supposed known, 
e.g., Gaussian distribution.  If no prior information about the 
true height is available, we get the probabilities from a 
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uniform distribution.  The corresponding probabilities at time 
k can be computed recursively according to Bayes’ rule, 

( )
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where ( )ip k |z  is the likelihood of measurement kz , given 

that the target originated in subinterval i.  Assuming Gaussian 
statistics, this can be computed as 

( ) ( ) ( )
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where ( )′= −−−
i

kk
i
kk

i
kk r 1|1|1|

ˆ,ˆˆ θz  is the predicted measurement at 

k  for filter i , and iR  is the innovation variance for filter i  

given by 
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is the linearised measurement matrix , and i
kkP 1| −  is the 

predicted covariance for filter i , and 0R  is the measurement 

variance matrix. 

 Now, suppose that the updated state estimate of filter i  

is denoted by i
kk|x̂ .  Then, the updated state estimate of the 

height-parameterized tracker can be computed as a weighted 
sum of the individual estimates, 

∑
=

=
FN

i

i
kk

i
kkk w

1
|| ˆˆ xx .                 (8) 

Similarly, if i
kkP | denotes the covariance matrix of the i-th filter 

at k, the corresponding covariance for the 
height-parameterized tracker may be computed as 
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 The tracker initialization for HPEKF is carried out 
according to standard initialization techniques for single EKF 
trackers. In particular, the state vector and its covariance are 
initialized as [8] 

( )′−−= 0,0,0,,cos,sinˆ 1
22

11
22

10|0 iii
i zzrzr θθx , 

( )222222
0|0 ,,,,, vvvzzz

i
iii

diagP σσσσσσ= , 

where ( )111 , θr=z  is the initial 2D-radar report, iz and 
izσ  

are mean and standard deviation of height estimate for interval 
i assuming uniform distribution of errors, and vσ is the 

velocity standard deviation. 

The HP tracker has to implement FN  EKFs if all the 

height subintervals are processed throughout.  However, it 
has been found that in a majority of target-observer scenarios, 
the weighting of some of the subintervals rapidly reduce to 
zero.  In such cases, the corresponding filters can be removed 
from the tracking process without loss of accuracy, thereby 
reducing the processing requirement.  Thus, a weighting 
threshold can be set and any filter corresponding to a 
subinterval with a weight less than the threshold may be 
removed from the tracking process. 

 

4. ALGORITHM FOR HPEKF 

 

 Based on the elements presented above, it is possible to 
propose the following generic algorithm for HPEKF. 

Algorithm for HPEKF 

1. Divide the height interval into FN  subintervals. 

2. Initialization: at 1=k , for FNi ,,2,1= , set 

( )′−−= 0,0,0,,cos,sinˆ 1
22

11
22

10|0 iii
i zzrzr θθx , 

( )222222
0|0 ,,,,, vvvzzz

i
iii

diagP σσσσσσ= . 

3. At time k , for FNi ,,2,1=  
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 Implement EKFs parallel: 
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 Compute the weights associated with each EKF: 

( )
( )∑ = −

−=
FN

j
j

kk

i
kki

k
wjp

wip
w

1 1

1

|

|

z
z

; 

where 

( )

( ) ( )






 −−−= −

−
−

i
kkki

i
kkk

i

k

R
R

ip

1|
1

1|21
ˆ'ˆ

2
1exp

2
1

|

zzzz

z

π
 

 Compute the state estimate and the corresponding 
covariance of the target: 
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5. SIMULATION RESULTS 

 

The example considers a target that starts at 
1000=x m, 50000=y m and 5000=z m and travels along 

with the x  axis at a speed of sm /300 .  For this illustrative 
example, a rotating radar with a scan period of 1s provides 
range and bearing measurement.  The radar provides range 
measurements with a standard deviation of 150m and bearing 
measurement with a standard deviation of 7.0 . The range 
and bearing measurements are processed via extended Kalman 

filter equations. The results are an average of Monte Carlo 
simulations with 100 trials.   

Figure 1 shows the RMSEs in the height estimates for the 
EKF with 5000m initial height.  Figure 2 and figure 3 show 
the RMSEs in the height estimates for EKF with 4000m and 
7000m initial height respectively.  It can be find that the 
height estimates sequence is convergent and the estimate 
errors are small if the initial height is relative accurate.  If the 
initial height is not accurate, the height estimates sequence is 
divergent.  Figure 4 shows the comparison of the RMSEs in 
the height estimates for the EKFs with initial velocities along 
with the x  axis 300 sm / , 400 sm / and 500 sm / respectively.  
Note that the influence of the velocity initialization is very 
small.  Figure 5 shows the RMSEs in the height estimates for 
the HPEKF.  From this figure we can see that the height 
estimates sequence is convergent, and the height estimate 
errors are close to the height estimate errors for the EKF with 
real height of the target as its initial height.   

 
Fig. 1 RMS height error with 5000m initial height 

 
Fig. 2 RMS height error with 4000m initial height 
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Fig. 3 RMS height error with 7000m initial height 

 
Fig. 4 RMS height error comparison with different velocity         

initializations 

 
Fig. 5 RMS height error by the HPEKF proposed in this paper 
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